Genus two curves with quaternionic multiplication and modular Jacobian

نویسندگان

  • Josep González
  • Jordi Guàrdia
چکیده

We describe a method to determine all the isomorphism classes of principal polarizations of the modular abelian surfaces Af with quaternionic multiplication attached to a normalized newform f without complex multiplication. We include an example of Af with quaternionic multiplication for which we find numerically a curve C whose Jacobian is Af up to numerical approximation, and we prove that it has quaternionic multiplication and is isogenous to Af .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On equations defining fake elliptic curves par Pilar BAYER et Jordi GUÀRDIA

Shimura curves associated to rational nonsplit quaternion algebras are coarse moduli spaces for principally polarized abelian surfaces endowed with quaternionic multiplication. These objects are also known as fake elliptic curves. We present a method for computing equations for genus 2 curves whose Jacobian is a fake elliptic curve with complex multiplication. The method is based on the explici...

متن کامل

On Abelian Surfaces with Potential Quaternionic Multiplication

An abelian surface A over a field K has potential quaternionic multiplication if the ring End K̄ (A) of geometric endomorphisms of A is an order in an indefinite rational division quaternion algebra. In this brief note, we study the possible structures of the ring of endomorphisms of these surfaces and we provide explicit examples of Jacobians of curves of genus two which show that our result is...

متن کامل

Montgomery Ladder for All Genus 2 Curves in Characteristic 2

Using the Kummer surface, we generalize Montgomery ladder for scalar multiplication to the Jacobian of genus 2 curves in characteristic 2. Previously this method was known for elliptic curves and for genus 2 curves in odd characteristic. We obtain an algorithm that is competitive compared to usual methods of scalar multiplication and that has additional properties such as resistance to side-cha...

متن کامل

Explicit computations of Serre’s obstruction for genus 3 curves and application to optimal curves

Let k be a field of characteristic different from 2. There can be an obstruction for a principally polarized abelian threefold (A, a) over k, which is a Jacobian over k, to be a Jacobian over k. It can be computed in terms of the rationality of the square root of the value of a certain Siegel modular form. We show how to do this explicitly for principally polarized abelian threefolds which are ...

متن کامل

Montgomery Scalar Multiplication for Genus 2 Curves

Using powerful tools on genus 2 curves like the Kummer variety, we generalize the Montgomery method for scalar multiplication to the jacobian of these curves. Previously this method was only known for elliptic curves. We obtain an algorithm that is competitive compared to the usual methods of scalar multiplication and that has additional properties such as resistance to timings attacks. This al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2009